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ABSTRACT

The exponential embedding of two or more probability den-
sity functions (PDFs) is proposed for multimodal sensor pro-
cessing. It approximates the unknown PDF by exponentially
embedding the known PDFs. Such embedding is of a expo-
nential family indexed by some parameters, and hence in-
herits many nice properties of the exponential family. It is
shown that the approximated PDF is asymptotically the one
that is the closest to the unknown PDF in Kullback-Leibler
(KL) divergence. Applied to hypothesis testing, this approach
shows improved performance compared to existing methods
for cases of practical importance where the sensor outputs are
not independent.

Index Terms— Sensor fusion, hypothesis testing, expo-
nential embedding, exponential family, Kullback-Leibler di-
vergence

1. INTRODUCTION

Distributed detection systems have many applications such as
radar and sonar, medical diagnosis, weather prediction, and
financial analysis. To obtain optimal performance, we require
the joint PDF of the sensor outputs, which is not always avail-
able. One common approach [1], [2] is to assume that the
PDFs of the sensor outputs are independent, and hence the
joint PDF is the product of the marginal PDFs. However, this
assumption may not be satisfied since the sensor measure-
ments could be correlated due to the common source and the
relative sensor locations. The correlation is noticed in [3],
[4], where a copula based framework is proposed to estimate
the joint PDF from the marginal PDFs. In this work, we ap-
proximate the joint PDF by exponentially embedded families
(EEFs) in the sense that it asymptotically minimizes the KL
divergence of the true PDF and the estimated one. For two
PDFs p1 and p0, the KL divergence is defined as

D (p1 ‖p0 ) =
∫

p1(x) ln p1(x)
p0(x)dx

It is always nonnegative and equals zero if and only if p 1 =
p0 almost everywhere. The KL divergence is a measure of
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the asymptotic performance of binary hypothesis testing by
Stein’s lemma [5].

The term “exponentially embedded familie” follows that
in [6], where it is used for model order estimation. The em-
bedded PDF is of an exponential family indexed by one or
more parameters, and so has many nice properties of that fam-
ily. In a differential geometry point of view, the EEF forms a
manifold in log-PDF space. In one-dimensional case, the EEF
is the PDF that minimizes D (p ‖p0 ) with the constraint that
D (p ‖p0 ) − D (p ‖p1 ) = θ [5], [7]. Here we focus on the
problem of binary hypothesis testing. We assume the pres-
ence of two sensors in this paper. Similar results are obtained
for multiple hypothesis testing and multiple sensors.

The paper is organized as follows. Section 2 defines the
EEF and discusses its properties. Followed in Section 3 is
its application for hypothesis testing. An example is given in
section 4. In Section 5, we show the simulation results by
comparing the ROC curves of different approaches. Conclu-
sion is drawn finally in Section 6.

2. EEF AND ITS PROPERTIES

Assume that a source produces the underlying samples x
which are unobservable, and we have two sensors whose
outputs are the statistics t1(x) and t2(x) of x. Consider
the binary hypothesis testing problem where we know the
reference PDF pX(x;H0), but not pX(x;H1). So we can
find the joint PDF pT1,T2(t1, t2;H0), but do not know
pT1,T2(t1, t2;H1). We assume that the marginal PDFs
pT1(t1;H1) and pT2(t2;H1) are known. So the problem
is to test between H0 and H1 where we know the joint PDF
under H0 and the marginal PDFs under H1. The EEF is
defined as

pX(x; η) =(
pT1 (t1(x);H1)

pT1 (t1(x);H0)

)η1 (
pT2 (t2(x);H1)

pT2 (t2(x);H0)

)η2

pX (x;H0)∫ (
pT1 (t1(x);H1)

pT1 (t1(x);H0)

)η1 (
pT2 (t2(x);H1)

pT2 (t2(x);H0)

)η2

pX (x;H0) dx
(1)

where η = [η1, η2]
T are the embedding parameters with the

constraints

η ∈ {η : η1, η2 ≥ 0, η1 + η2 ≤ 1} = S (2)



Notice that pX(x; η) does not require the knowledge of
pX(x;H1). So in practice, we just need to estimate pX(x;H0)
and only the PDFs of T1 and T2 under H1 from training data
(see also [8]). The reason why we have the constraints in (2)
will be explained later. The next theorem is an extension of
Kullback’s results [5], [7]..

Theorem. The PDF of x as in (1) is the one that minimizes
D (pX(x) ‖pX(x;H0) ) subject to the constraints that

D (pTi(ti) ‖pTi(ti;H0) ) − D (pTi(ti) ‖pTi(ti;H1) ) = θi

for i = 1, 2, where pT1(t1) and pT2(t2) are the PDFs of T1

and T2 corresponding to pX(x).

Proof. Since

D (pTi(ti) ‖pTi(ti;H0) ) − D (pTi(ti) ‖pTi(ti;H1) )

=
∫

pX(x) ln
pTi (ti(x);H1)
pTi (ti(x);H0)

dx for i = 1, 2

using Lagrange multipliers for the minimization gives

J (pX(x)) =
∫

pX(x) ln
pX(x)

pX(x;H0)
dx

+ λ1

∫
pX(x) ln

pT1 (t1(x);H1)
pT1 (t1(x);H0)

dx

+ λ2

∫
pX(x) ln

pT2 (t2(x);H1)
pT2 (t2(x);H0)

dx + λ3

∫
pX(x)dx

Differentiating with respect to pX(x) and setting to 0, we
have

ln
pX(x)

pX(x;H0)
+ 1 + λ1 ln

pT1 (t1(x);H1)
pT1 (t1(x);H0)

+ λ2 ln
pT2 (t2(x);H1)
pT2 (t2(x);H0)

+ λ3 = 0

Solving this equation and letting η1 = −λ1 and η2 = −λ2,
the pX(x) that minimizes D (pX(x) ‖pX(x;H0) ) is of the
form as in (1) where η1 and η2 are chosen to meet the con-
straints.

By letting

K(η) = ln
∫ (

pT1 (t1(x);H1)
pT1 (t1(x);H0)

)η1 (
pT2 (t2(x);H1)
pT2 (t2(x);H0)

)η2

× pX (x; H0) dx (3)

lT1(x) = ln
pT1 (t1(x);H1)
pT1 (t1(x);H0)

, lT2(x) = ln
pT2 (t2(x);H1)
pT2 (t2(x);H0)

(4)
(1) can be written as

pX(x; η) = exp [η1lT1 (x) + η2lT2 (x) − K (η)
+ ln pX (x; H0)] (5)

which is a two-parameter exponential family [9]. K (η) is
recognized as the cumulant generating function of lT1(x),
lT2(x) when the PDF of x is pX(x;H0). Since (5) is of an
exponential family, the EEF inherits some useful properties
that we will discuss in the following (refer to [9], [10] and
[11] for details).

1) If the PDF of x is pX(x; η), then the joint PDF of T1

and T2 is [11]

pT1,T2(t1, t2; η) = exp [η1lT1 + η2lT2 − K (η)
+ ln pT1,T2(t1, t2;H0)] (6)

where

lT1 = ln
pT1 (t1;H1)
pT1 (t1;H0)

, lT2 = ln
pT2 (t2;H1)
pT2 (t2;H0)

(7)

This can also be easily proved using surface integral tech-
niques [12]. Notice that for (6), T1 and T2 are not indepen-
dent unless they are independent under H0.

2) K (η) is convex by Holder’s inequality [9]. If we as-
sume that lT1 and lT2 are linearly independent [13], then η is
identifiable, and hence K (η) is strictly convex [10].

3) Let Eη (lTi) be the expected value of lTi for i = 1, 2
and Cη be the covariance matrix of [lT1 , lT2 ]

T when x is
distributed according to pX(x; η). We have

∂K(η)
∂ηi

= Eη (lTi) (8)

⎡
⎣ ∂2K(η)

∂η2
1

∂2K(η)
∂η1∂η2

∂2K(η)
∂η2∂η1

∂2K(η)

∂η2
2

⎤
⎦ = Cη (9)

Notice that (9) also shows that K (η) is convex.
4) [lT1 , lT2 ]

T is a minimal and complete sufficient statis-
tic for η. Hence [lT1 , lT2 ]

T can be used to discriminate be-
tween pX(x;H1) and pX(x;H0).

5) K (η) is finite on S. To see this, K (η) > −∞ by defi-
nition. Obviously, K (η) = 0 for η = [0, 0]T , [1, 0]T , [0, 1]T .
Since K (η) is strictly convex, we have K (η) ≤ 0 < ∞ for
η ∈ S. But when η is outside S, there is no guarantee that
K (η) is finite in general. This explains why we have the
constraints in (2).

3. EEF FOR HYPOTHESIS TESTING

For binary hypothesis testing, we will decide H1 if

max
η

ln
pX(x; η)

pX(x;H0)
> τ (10)

where τ is a threshold. This test statistic actually does not
depend on x but only on t1 and t2 since

g(η) = ln
pX(x; η)
pX(x;H0)

= η1lT1 + η2lT2 − K(η) (11)



The reason why we choose this test statistic, as we will show
next, is that asymptotically max

η
pX(x; η) is the closest to the

unknown pX(x;H1) in KL divergence.
Assume that there are a large number of independent

and identically distributed (IID) unobservable x i’s for i =
1, 2, . . . , N , which results in IID t1i’s and IID t2i’s. We want
to maximize

1
N

N∑
i=1

ln
pX(xi; η)

pX(xi;H0)

= exp

[
η1

1
N

N∑
i=1

lT1i + η2
1
N

N∑
i=1

lT2i − K(η)

]
(12)

By the law of large number, under H1

1
N

N∑
i=1

lT1i → EH1 (lT1) = D (pT1 (t1;H1) ‖pT1 (t1;H0) )

1
N

N∑
i=1

lT2i → EH1 (lT2) = D (pT2 (t2;H1) ‖pT2 (t2;H0) )

as N → ∞. So we are asymptotically maximizing

η1D (pT1 (t1;H1) ‖pT1 (t1;H0) )
+ η2D (pT2 (t2;H1) ‖pT2 (t2;H0) ) − K(η) (13)

Since

ln
pX(x;H1)
pX(x; η)

= −η1lT1 − η2lT2 + K(η) + ln
pX(x;H1)
pX(x;H0)

the KL divergence between pX(x;H1) and pX(x; η) is

D (pX(x;H1) ‖pX(x; η) )

= EH1 exp
[
−η1lT1 − η2lT2 + K(η) + ln

pX(x;H1)
pX(x;H0)

]
= −η1D (pT1 (t1;H1) ‖pT1 (t1;H0) )

− η2D (pT2 (t2;H1) ‖pT2 (t2;H0) )
+ K(η) + D (pX (x;H1) ‖pX (x;H0) ) (14)

This shows that D (pX(x;H1) ‖pX(x; η) ) is minimized by
maximizing (13). A similar result is shown in [6] by using a
Pythagorean-like theorem. Also if T1 and/or T2 are sufficient
statistics for deciding between H0 and H1, it can be shown
that pX(x; η) = pX(x;H1). Thus, the true PDF under H1 is
recovered [14].

To implement (10), we require the maximum likelihood
estimate (MLE) of η. Let η∗ be the MLE of η without con-
straints in (2). Since g (η) is strictly concave, η∗ is unique.
Taking partial derivatives of g (η) and setting to 0, we have

lT1 = ∂K(η)
∂η1

|η∗ , lT2 = ∂K(η)
∂η2

|η∗ (15)

Let η̂ be the MLE of η with the constraints. If η∗ is in the
constraint set S, then η̂ = η∗. Otherwise, η̂ is unique and
is on the boundary of S since −g (η) is strictly convex and
S is convex also [15], and hence we could simply search the
boundary of S to find η̂.

4. EXAMPLE

Since only T1 and T2 are used in hypothesis testing, we only
need to specify their distributions. Consider the case when
T1 and T2 are scalars (will write them as T1 and T2) with
distributions[

T1

T2

]
∼ N

([
0
0

]
, σ2

[
1 ρ0

ρ0 1

])
under H0

[
T1

T2

]
∼ N

([
A1

A2

]
, σ2

[
1 ρ1

ρ1 1

])
under H1

where ρ0 is known but ρ1 is unknown (we do not need the
joint PDF of T1 and T2 under H1). We have

K(η) = ln EH0 [exp (η1lT1 + η2lT2)]

= ln EH0

[
exp

(
η1

2t1A1 − A2
1

2σ2
+ η2

2t2A2 − A2
2

2σ2

)]

= −η1
A2

1

2σ2
− η2

A2
2

2σ2

+ ln EH0

[
exp

(
η1t1A1 + η2t2A2

σ2

)]

Let φ =
[

η1A1
σ2 , η2A2

σ2

]T

and t = [t1, t2]
T , then

EH0

[
exp

(
η1t1A1 + η2t2A2

σ2

)]
= EH0

[
exp

(
φT t

)]

= exp
(

1
2
φTC0φ

)

where C0 = σ2

[
1 ρ0

ρ0 1

]
and hence

K(η) = −η1
A2

1

2σ2
− η2

A2
2

2σ2
+

1
2
φTC0φ

So

g(η) = η1lT1 + η2lT2 − K(η)

= η1
2t1A1 − A2

1

2σ2
+ η2

2t2A2 − A2
2

2σ2
− K(η)

=
η1A1t1

σ2
+

η2A2t2
σ2

− 1
2
φTC0φ

= tT φ − 1
2
φT C0φ

Differentiating and setting to 0, the global maximum is found
at

φ∗ = C−1
0 t =

[
t1−ρ0t2
1−ρ2

0
t2−ρ0t1
1−ρ2

0

]

or

η∗ =

⎡
⎣ σ2(t1−ρ0t2)

A1(1−ρ2
0)

σ2(t2−ρ0t1)
A2(1−ρ2

0)

⎤
⎦



If η∗ ∈ S, then we decide H1 if g(η∗) = tTC−1
0 t > τ ,

otherwise we search η̂ on the boundary and decide H1 if
g(η̂) > τ .

When we observe N IID t1i’s and IID t2i’s, then it eas-
ily extends that by (12), [t1, t2]

T is replaced by the sample

mean
[

1
N

∑N
i=1 t1i,

1
N

∑N
i=1 t2i

]T

, and everything else re-

mains the same.

5. SIMULATION RESULTS

For the above example, we set N = 20, A1 = 0.3, A2 =
0.35, σ2 = 1, ρ0 = 0.6 and ρ1 = 0.7. We compare the
EEF approach with the clairvoyant detector (ρ1 is known, its
performance is an upper bound), the detector assuming inde-
pendence of t1 and t2, and the copula based method. The
copula method estimates the linear correlation coefficient ρ1

using a non-parametric rank correlation measure, Kendall’s
τ . We use the Gaussian copula as in [3]. The simulation is
repeated for 5000 trials. The receiver operating characteristic
curves (ROC) are plotted. As seen in Fig. 1, the EEF is only
poorer than the clairvoyant detector, and performs better than
the other two methods.
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Fig. 1. ROC curves for different detectors.

6. CONCLUSION

The EEF based approach is proposed for the problem of mul-
timodal signal processing when the outputs are not indepen-
dent. It exponentially embeds two or more PDFs and approx-
imates an unknown PDF. Such embedding is highly related to
the KL divergence and many of its properties have been dis-
cussed. Examples are given to help understand the application
of this method. Compared to some existing approaches, better
performance is observed for the proposed method. The con-
nections among η̂, K (η) and the KL divergence and more of
its theoretical properties will be investigated in the future.
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